Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspesbca Structured version   Visualization version   GIF version

Theorem rspesbca 3486
 Description: Existence form of rspsbca 3485. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspesbca
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3405 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21rspcev 3282 . 2 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
3 cbvrexsv 3159 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
42, 3sylibr 223 1 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  [wsb 1867   ∈ wcel 1977  ∃wrex 2897  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403 This theorem is referenced by:  spesbc  3487  indexfi  8157  indexdom  32699
 Copyright terms: Public domain W3C validator