MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indexfi Structured version   Visualization version   GIF version

Theorem indexfi 8157
Description: If for every element of a finite indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a finite subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Proven without the Axiom of Choice, unlike indexdom 32699. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
indexfi ((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝑐,𝑦,𝐴   𝐵,𝑐,𝑥,𝑦   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexfi
Dummy variables 𝑓 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . . . 6 𝑧𝜑
2 nfsbc1v 3422 . . . . . 6 𝑦[𝑧 / 𝑦]𝜑
3 sbceq1a 3413 . . . . . 6 (𝑦 = 𝑧 → (𝜑[𝑧 / 𝑦]𝜑))
41, 2, 3cbvrex 3144 . . . . 5 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
54ralbii 2963 . . . 4 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
6 dfsbcq 3404 . . . . 5 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
76ac6sfi 8089 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
85, 7sylan2b 491 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
9 simpll 786 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝐴 ∈ Fin)
10 ffn 5958 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
1110ad2antrl 760 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝑓 Fn 𝐴)
12 dffn4 6034 . . . . . 6 (𝑓 Fn 𝐴𝑓:𝐴onto→ran 𝑓)
1311, 12sylib 207 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝑓:𝐴onto→ran 𝑓)
14 fofi 8135 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto→ran 𝑓) → ran 𝑓 ∈ Fin)
159, 13, 14syl2anc 691 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ran 𝑓 ∈ Fin)
16 frn 5966 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
1716ad2antrl 760 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ran 𝑓𝐵)
18 fnfvelrn 6264 . . . . . . . . 9 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
1910, 18sylan 487 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
20 rspesbca 3486 . . . . . . . . 9 (((𝑓𝑥) ∈ ran 𝑓[(𝑓𝑥) / 𝑦]𝜑) → ∃𝑦 ∈ ran 𝑓𝜑)
2120ex 449 . . . . . . . 8 ((𝑓𝑥) ∈ ran 𝑓 → ([(𝑓𝑥) / 𝑦]𝜑 → ∃𝑦 ∈ ran 𝑓𝜑))
2219, 21syl 17 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑 → ∃𝑦 ∈ ran 𝑓𝜑))
2322ralimdva 2945 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
2423imp 444 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
2524adantl 481 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
26 simpr 476 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → 𝑤𝐴)
27 simprr 792 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
28 nfv 1830 . . . . . . . . . . 11 𝑤[(𝑓𝑥) / 𝑦]𝜑
29 nfsbc1v 3422 . . . . . . . . . . 11 𝑥[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑
30 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑓𝑥) = (𝑓𝑤))
3130sbceq1d 3407 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([(𝑓𝑥) / 𝑦]𝜑[(𝑓𝑤) / 𝑦]𝜑))
32 sbceq1a 3413 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([(𝑓𝑤) / 𝑦]𝜑[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑))
3331, 32bitrd 267 . . . . . . . . . . 11 (𝑥 = 𝑤 → ([(𝑓𝑥) / 𝑦]𝜑[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑))
3428, 29, 33cbvral 3143 . . . . . . . . . 10 (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 ↔ ∀𝑤𝐴 [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
3527, 34sylib 207 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑤𝐴 [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
3635r19.21bi 2916 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
37 rspesbca 3486 . . . . . . . 8 ((𝑤𝐴[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑) → ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
3826, 36, 37syl2anc 691 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
3938ralrimiva 2949 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
40 dfsbcq 3404 . . . . . . . . 9 (𝑧 = (𝑓𝑤) → ([𝑧 / 𝑦]𝜑[(𝑓𝑤) / 𝑦]𝜑))
4140rexbidv 3034 . . . . . . . 8 (𝑧 = (𝑓𝑤) → (∃𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4241ralrn 6270 . . . . . . 7 (𝑓 Fn 𝐴 → (∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4311, 42syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → (∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4439, 43mpbird 246 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑)
45 nfv 1830 . . . . . 6 𝑧𝑥𝐴 𝜑
46 nfcv 2751 . . . . . . 7 𝑦𝐴
4746, 2nfrex 2990 . . . . . 6 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
483rexbidv 3034 . . . . . 6 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
4945, 47, 48cbvral 3143 . . . . 5 (∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑 ↔ ∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑)
5044, 49sylibr 223 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)
51 sseq1 3589 . . . . . 6 (𝑐 = ran 𝑓 → (𝑐𝐵 ↔ ran 𝑓𝐵))
52 rexeq 3116 . . . . . . 7 (𝑐 = ran 𝑓 → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ ran 𝑓𝜑))
5352ralbidv 2969 . . . . . 6 (𝑐 = ran 𝑓 → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
54 raleq 3115 . . . . . 6 (𝑐 = ran 𝑓 → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))
5551, 53, 543anbi123d 1391 . . . . 5 (𝑐 = ran 𝑓 → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ (ran 𝑓𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)))
5655rspcev 3282 . . . 4 ((ran 𝑓 ∈ Fin ∧ (ran 𝑓𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
5715, 17, 25, 50, 56syl13anc 1320 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
588, 57exlimddv 1850 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
59583adant2 1073 1 ((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  [wsbc 3402  wss 3540  ran crn 5039   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-fin 7845
This theorem is referenced by:  filbcmb  32705
  Copyright terms: Public domain W3C validator