Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlval Structured version   Visualization version   GIF version

Theorem pridlval 33002
Description: The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
pridlval.1 𝐺 = (1st𝑅)
pridlval.2 𝐻 = (2nd𝑅)
pridlval.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlval (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Distinct variable groups:   𝑅,𝑖,𝑥,𝑦,𝑎,𝑏   𝑖,𝑋   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem pridlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6103 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 pridlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3syl6eqr 2662 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5274 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 pridlval.3 . . . . . 6 𝑋 = ran 𝐺
75, 6syl6eqr 2662 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 2842 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
9 fveq2 6103 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
10 pridlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
119, 10syl6eqr 2662 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1211oveqd 6566 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑦) = (𝑥𝐻𝑦))
1312eleq1d 2672 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐻𝑦) ∈ 𝑖))
14132ralbidv 2972 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖))
1514imbi1d 330 . . . . . 6 (𝑟 = 𝑅 → ((∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
161, 15raleqbidv 3129 . . . . 5 (𝑟 = 𝑅 → (∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
171, 16raleqbidv 3129 . . . 4 (𝑟 = 𝑅 → (∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
188, 17anbi12d 743 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))))
191, 18rabeqbidv 3168 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
20 df-pridl 32980 . 2 PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
21 fvex 6113 . . 3 (Idl‘𝑅) ∈ V
2221rabex 4740 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ∈ V
2319, 20, 22fvmpt 6191 1 (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  wss 3540  ran crn 5039  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  RingOpscrngo 32863  Idlcidl 32976  PrIdlcpridl 32977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-pridl 32980
This theorem is referenced by:  ispridl  33003
  Copyright terms: Public domain W3C validator