Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxov Structured version   Visualization version   GIF version

Theorem opvtxov 25682
 Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxov ((𝑉𝑋𝐸𝑌) → (𝑉Vtx𝐸) = 𝑉)

Proof of Theorem opvtxov
StepHypRef Expression
1 df-ov 6552 . . 3 (𝑉Vtx𝐸) = (Vtx‘⟨𝑉, 𝐸⟩)
21a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉Vtx𝐸) = (Vtx‘⟨𝑉, 𝐸⟩))
3 opvtxfv 25681 . 2 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
42, 3eqtrd 2644 1 ((𝑉𝑋𝐸𝑌) → (𝑉Vtx𝐸) = 𝑉)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ⟨cop 4131  ‘cfv 5804  (class class class)co 6549  Vtxcvtx 25673 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-1st 7059  df-vtx 25675 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator