Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 29142
 Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 29133 . . . 4 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 479 . . 3 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 29132 . . 3 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 29033 . . . 4 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 479 . . 3 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
62, 3, 53syl 18 . 2 (𝐹 ∈ oField → 𝐹 ∈ oMnd)
7 omndtos 29036 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
86, 7syl 17 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  Tosetctos 16856  Grpcgrp 17245  Fieldcfield 18571  oMndcomnd 29028  oGrpcogrp 29029  oRingcorng 29126  oFieldcofld 29127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-omnd 29030  df-ogrp 29031  df-orng 29128  df-ofld 29129 This theorem is referenced by:  ofldchr  29145
 Copyright terms: Public domain W3C validator