Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-id | Structured version Visualization version GIF version |
Description: Theorem id 22 expressed with ⊼. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-id | ⊢ (𝜏 ⊼ (𝜏 ⊼ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-ax 1589 | . . 3 ⊢ ((𝜓 ⊼ (𝜓 ⊼ 𝜓)) ⊼ ((𝜃 ⊼ (𝜃 ⊼ 𝜃)) ⊼ ((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))))) | |
2 | 1 | nic-idlem2 1593 | . 2 ⊢ ((((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))) ⊼ (𝜓 ⊼ (𝜓 ⊼ 𝜓))) |
3 | nic-idlem1 1592 | . . 3 ⊢ (((𝜒 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏))) ⊼ ((((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))) ⊼ (((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))))) | |
4 | 3 | nic-idlem2 1593 | . 2 ⊢ (((((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))) ⊼ (𝜓 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜒 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏)))) |
5 | 2, 4 | nic-mp 1587 | 1 ⊢ (𝜏 ⊼ (𝜏 ⊼ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-nan 1440 |
This theorem is referenced by: nic-swap 1595 nic-idel 1600 nic-bi1 1604 nic-bi2 1605 nic-luk2 1608 nic-luk3 1609 |
Copyright terms: Public domain | W3C validator |