Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-idel Structured version   Visualization version   GIF version

Theorem nic-idel 1600
 Description: Inference to remove the trailing term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nic-idel.1 (𝜑 ⊼ (𝜒𝜓))
Assertion
Ref Expression
nic-idel (𝜑 ⊼ (𝜒𝜒))

Proof of Theorem nic-idel
StepHypRef Expression
1 nic-id 1594 . . 3 (𝜒 ⊼ (𝜒𝜒))
21nic-isw1 1596 . 2 ((𝜒𝜒) ⊼ 𝜒)
3 nic-idel.1 . . 3 (𝜑 ⊼ (𝜒𝜓))
43nic-imp 1591 . 2 (((𝜒𝜒) ⊼ 𝜒) ⊼ ((𝜑 ⊼ (𝜒𝜒)) ⊼ (𝜑 ⊼ (𝜒𝜒))))
52, 4nic-mp 1587 1 (𝜑 ⊼ (𝜒𝜒))
 Colors of variables: wff setvar class Syntax hints:   ⊼ wnan 1439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-nan 1440 This theorem is referenced by:  nic-bi1  1604  nic-bi2  1605  nic-luk1  1607
 Copyright terms: Public domain W3C validator