Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-luk2 Structured version   Visualization version   GIF version

Theorem nic-luk2 1608
 Description: Proof of luk-2 1572 from nic-ax 1589 and nic-mp 1587. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-luk2 ((¬ 𝜑𝜑) → 𝜑)

Proof of Theorem nic-luk2
StepHypRef Expression
1 nic-dfim 1585 . . . . 5 (((¬ 𝜑 ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑𝜑)) ⊼ (((¬ 𝜑 ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑 ⊼ (𝜑𝜑))) ⊼ ((¬ 𝜑𝜑) ⊼ (¬ 𝜑𝜑))))
21nic-bi2 1605 . . . 4 ((¬ 𝜑𝜑) ⊼ ((¬ 𝜑 ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑 ⊼ (𝜑𝜑))))
3 nic-dfneg 1586 . . . . . 6 (((𝜑𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑)))
4 nic-id 1594 . . . . . 6 ((𝜑𝜑) ⊼ ((𝜑𝜑) ⊼ (𝜑𝜑)))
53, 4nic-iimp1 1598 . . . . 5 ((𝜑𝜑) ⊼ ((𝜑𝜑) ⊼ ¬ 𝜑))
65nic-isw2 1597 . . . 4 ((𝜑𝜑) ⊼ (¬ 𝜑 ⊼ (𝜑𝜑)))
72, 6nic-iimp1 1598 . . 3 ((𝜑𝜑) ⊼ (¬ 𝜑𝜑))
87nic-isw1 1596 . 2 ((¬ 𝜑𝜑) ⊼ (𝜑𝜑))
9 nic-dfim 1585 . . 3 ((((¬ 𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ ((¬ 𝜑𝜑) → 𝜑)) ⊼ ((((¬ 𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ ((¬ 𝜑𝜑) ⊼ (𝜑𝜑))) ⊼ (((¬ 𝜑𝜑) → 𝜑) ⊼ ((¬ 𝜑𝜑) → 𝜑))))
109nic-bi1 1604 . 2 (((¬ 𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ (((¬ 𝜑𝜑) → 𝜑) ⊼ ((¬ 𝜑𝜑) → 𝜑)))
118, 10nic-mp 1587 1 ((¬ 𝜑𝜑) → 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ⊼ wnan 1439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-nan 1440 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator