Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfifd Structured version   Visualization version   GIF version

Theorem nfifd 4064
 Description: Deduction version of nfif 4065. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2 (𝜑 → Ⅎ𝑥𝜓)
nfifd.3 (𝜑𝑥𝐴)
nfifd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfifd (𝜑𝑥if(𝜓, 𝐴, 𝐵))

Proof of Theorem nfifd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif2 4038 . 2 if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦𝐵𝜓) → (𝑦𝐴𝜓))}
2 nfv 1830 . . 3 𝑦𝜑
3 nfifd.4 . . . . . 6 (𝜑𝑥𝐵)
43nfcrd 2757 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝐵)
5 nfifd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
64, 5nfimd 1812 . . . 4 (𝜑 → Ⅎ𝑥(𝑦𝐵𝜓))
7 nfifd.3 . . . . . 6 (𝜑𝑥𝐴)
87nfcrd 2757 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝐴)
98, 5nfand 1814 . . . 4 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
106, 9nfimd 1812 . . 3 (𝜑 → Ⅎ𝑥((𝑦𝐵𝜓) → (𝑦𝐴𝜓)))
112, 10nfabd 2771 . 2 (𝜑𝑥{𝑦 ∣ ((𝑦𝐵𝜓) → (𝑦𝐴𝜓))})
121, 11nfcxfrd 2750 1 (𝜑𝑥if(𝜓, 𝐴, 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  Ⅎwnf 1699   ∈ wcel 1977  {cab 2596  Ⅎwnfc 2738  ifcif 4036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-if 4037 This theorem is referenced by:  nfif  4065
 Copyright terms: Public domain W3C validator