Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo5f Structured version   Visualization version   GIF version

Theorem mo5f 28708
 Description: Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
mo5f.1 𝑖𝜑
mo5f.2 𝑗𝜑
Assertion
Ref Expression
mo5f (∃*𝑥𝜑 ↔ ∀𝑖𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
Distinct variable group:   𝑖,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑖,𝑗)

Proof of Theorem mo5f
StepHypRef Expression
1 mo5f.2 . . 3 𝑗𝜑
21mo3 2495 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗))
3 mo5f.1 . . . . . 6 𝑖𝜑
43nfsb 2428 . . . . . 6 𝑖[𝑗 / 𝑥]𝜑
53, 4nfan 1816 . . . . 5 𝑖(𝜑 ∧ [𝑗 / 𝑥]𝜑)
6 nfv 1830 . . . . 5 𝑖 𝑥 = 𝑗
75, 6nfim 1813 . . . 4 𝑖((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)
87nfal 2139 . . 3 𝑖𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)
98sb8 2412 . 2 (∀𝑥𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗))
10 sbim 2383 . . . . 5 ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗))
11 sban 2387 . . . . . . 7 ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑))
12 nfs1v 2425 . . . . . . . . . 10 𝑥[𝑗 / 𝑥]𝜑
1312sbf 2368 . . . . . . . . 9 ([𝑖 / 𝑥][𝑗 / 𝑥]𝜑 ↔ [𝑗 / 𝑥]𝜑)
1413bicomi 213 . . . . . . . 8 ([𝑗 / 𝑥]𝜑 ↔ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑)
1514anbi2i 726 . . . . . . 7 (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑))
1611, 15bitr4i 266 . . . . . 6 ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑))
17 equsb3 2420 . . . . . 6 ([𝑖 / 𝑥]𝑥 = 𝑗𝑖 = 𝑗)
1816, 17imbi12i 339 . . . . 5 (([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
1910, 18bitri 263 . . . 4 ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
2019sbalv 2452 . . 3 ([𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
2120albii 1737 . 2 (∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
222, 9, 213bitri 285 1 (∃*𝑥𝜑 ↔ ∀𝑖𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  Ⅎwnf 1699  [wsb 1867  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator