Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsb3 | Structured version Visualization version GIF version |
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) Remove dependency on ax-11 2021. (Revised by Wolf Lammen, 21-Sep-2018.) |
Ref | Expression |
---|---|
equsb3 | ⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb3lem 2419 | . . 3 ⊢ ([𝑤 / 𝑦]𝑦 = 𝑧 ↔ 𝑤 = 𝑧) | |
2 | 1 | sbbii 1874 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤]𝑤 = 𝑧) |
3 | sbcom3 2399 | . . 3 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤][𝑥 / 𝑦]𝑦 = 𝑧) | |
4 | nfv 1830 | . . . 4 ⊢ Ⅎ𝑤[𝑥 / 𝑦]𝑦 = 𝑧 | |
5 | 4 | sbf 2368 | . . 3 ⊢ ([𝑥 / 𝑤][𝑥 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧) |
6 | 3, 5 | bitri 263 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧) |
7 | equsb3lem 2419 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 = 𝑧 ↔ 𝑥 = 𝑧) | |
8 | 2, 6, 7 | 3bitr3i 289 | 1 ⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: sb8eu 2491 mo3 2495 sb8iota 5775 mo5f 28708 mptsnunlem 32361 wl-equsb3 32516 wl-mo3t 32537 wl-sb8eut 32538 frege55lem1b 37209 sbeqal1 37620 |
Copyright terms: Public domain | W3C validator |