MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3 Structured version   Visualization version   GIF version

Theorem equsb3 2420
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) Remove dependency on ax-11 2021. (Revised by Wolf Lammen, 21-Sep-2018.)
Assertion
Ref Expression
equsb3 ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
Distinct variable group:   𝑦,𝑧

Proof of Theorem equsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equsb3lem 2419 . . 3 ([𝑤 / 𝑦]𝑦 = 𝑧𝑤 = 𝑧)
21sbbii 1874 . 2 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤]𝑤 = 𝑧)
3 sbcom3 2399 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤][𝑥 / 𝑦]𝑦 = 𝑧)
4 nfv 1830 . . . 4 𝑤[𝑥 / 𝑦]𝑦 = 𝑧
54sbf 2368 . . 3 ([𝑥 / 𝑤][𝑥 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧)
63, 5bitri 263 . 2 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧)
7 equsb3lem 2419 . 2 ([𝑥 / 𝑤]𝑤 = 𝑧𝑥 = 𝑧)
82, 6, 73bitr3i 289 1 ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wb 195  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868
This theorem is referenced by:  sb8eu  2491  mo3  2495  sb8iota  5775  mo5f  28708  mptsnunlem  32361  wl-equsb3  32516  wl-mo3t  32537  wl-sb8eut  32538  frege55lem1b  37209  sbeqal1  37620
  Copyright terms: Public domain W3C validator