Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishl | Structured version Visualization version GIF version |
Description: The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
ishl | ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hl 22942 | . 2 ⊢ ℂHil = (Ban ∩ ℂPreHil) | |
2 | 1 | elin2 3763 | 1 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∈ wcel 1977 ℂPreHilccph 22774 Bancbn 22938 ℂHilchl 22939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-in 3547 df-hl 22942 |
This theorem is referenced by: hlbn 22967 hlcph 22968 ishl2 22974 |
Copyright terms: Public domain | W3C validator |