Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin3 | Structured version Visualization version GIF version |
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin3 | ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin3 8993 | . . 3 ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} | |
2 | 1 | eleq2i 2680 | . 2 ⊢ (𝐴 ∈ FinIII ↔ 𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}) |
3 | elex 3185 | . . . 4 ⊢ (𝒫 𝐴 ∈ FinIV → 𝒫 𝐴 ∈ V) | |
4 | pwexb 6867 | . . . 4 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 223 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) |
6 | pweq 4111 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
7 | 6 | eleq1d 2672 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV)) |
8 | 5, 7 | elab3 3327 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV) |
9 | 2, 8 | bitri 263 | 1 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 {cab 2596 Vcvv 3173 𝒫 cpw 4108 FinIVcfin4 8985 FinIIIcfin3 8986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-pw 4110 df-sn 4126 df-pr 4128 df-uni 4373 df-fin3 8993 |
This theorem is referenced by: fin23lem41 9057 isfin32i 9070 fin34 9095 |
Copyright terms: Public domain | W3C validator |