MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrab Structured version   Visualization version   GIF version

Theorem invdisjrab 4572
Description: The restricted class abstractions {𝑥𝐵𝐶 = 𝑦} for distinct 𝑦𝐴 are disjoint. (Contributed by AV, 6-May-2020.)
Assertion
Ref Expression
invdisjrab Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem invdisjrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . . . 6 𝑥𝑧
2 nfcv 2751 . . . . . 6 𝑥𝐵
3 nfcsb1v 3515 . . . . . . 7 𝑥𝑧 / 𝑥𝐶
43nfeq1 2764 . . . . . 6 𝑥𝑧 / 𝑥𝐶 = 𝑦
5 csbeq1a 3508 . . . . . . 7 (𝑥 = 𝑧𝐶 = 𝑧 / 𝑥𝐶)
65eqeq1d 2612 . . . . . 6 (𝑥 = 𝑧 → (𝐶 = 𝑦𝑧 / 𝑥𝐶 = 𝑦))
71, 2, 4, 6elrabf 3329 . . . . 5 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} ↔ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦))
8 ax-1 6 . . . . 5 (𝑧 / 𝑥𝐶 = 𝑦 → (𝑦𝐴𝑧 / 𝑥𝐶 = 𝑦))
97, 8simplbiim 657 . . . 4 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} → (𝑦𝐴𝑧 / 𝑥𝐶 = 𝑦))
109impcom 445 . . 3 ((𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}) → 𝑧 / 𝑥𝐶 = 𝑦)
1110rgen2 2958 . 2 𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦
12 invdisj 4571 . 2 (∀𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦})
1311, 12ax-mp 5 1 Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  {crab 2900  csb 3499  Disj wdisj 4553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-disj 4554
This theorem is referenced by:  disjxwrd  13307  disjwrdpfx  40271
  Copyright terms: Public domain W3C validator