Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq2 Structured version   Visualization version   GIF version

Theorem infeq2 8268
 Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq2 (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))

Proof of Theorem infeq2
StepHypRef Expression
1 supeq2 8237 . 2 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
2 df-inf 8232 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
3 df-inf 8232 . 2 inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, 𝑅)
41, 2, 33eqtr4g 2669 1 (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  ◡ccnv 5037  supcsup 8229  infcinf 8230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-uni 4373  df-sup 8231  df-inf 8232 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator