MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infempty Structured version   Visualization version   GIF version

Theorem infempty 8295
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
infempty ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem infempty
StepHypRef Expression
1 df-inf 8232 . 2 inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, 𝑅)
2 cnvso 5591 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 brcnvg 5225 . . . . . . . 8 ((𝑦𝐴𝑋𝐴) → (𝑦𝑅𝑋𝑋𝑅𝑦))
43ancoms 468 . . . . . . 7 ((𝑋𝐴𝑦𝐴) → (𝑦𝑅𝑋𝑋𝑅𝑦))
54bicomd 212 . . . . . 6 ((𝑋𝐴𝑦𝐴) → (𝑋𝑅𝑦𝑦𝑅𝑋))
65notbid 307 . . . . 5 ((𝑋𝐴𝑦𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦𝑅𝑋))
76ralbidva 2968 . . . 4 (𝑋𝐴 → (∀𝑦𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
87pm5.32i 667 . . 3 ((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
9 brcnvg 5225 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑥𝑅𝑦))
109ancoms 468 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑥𝑅𝑦))
1110bicomd 212 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
1211notbid 307 . . . . 5 ((𝑥𝐴𝑦𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
1312ralbidva 2968 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
1413reubiia 3104 . . 3 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
15 sup0 8255 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
162, 8, 14, 15syl3anb 1361 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, 𝑅) = 𝑋)
171, 16syl5eq 2656 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  c0 3874   class class class wbr 4583   Or wor 4958  ccnv 5037  supcsup 8229  infcinf 8230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-po 4959  df-so 4960  df-cnv 5046  df-iota 5768  df-riota 6511  df-sup 8231  df-inf 8232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator