Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpprsnss Structured version   Visualization version   GIF version

Theorem ifpprsnss 40845
 Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
ifpprsnss (𝑃 = {𝐴, 𝐵} → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))

Proof of Theorem ifpprsnss
StepHypRef Expression
1 preq2 4213 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2 dfsn2 4138 . . . . . 6 {𝐴} = {𝐴, 𝐴}
31, 2syl6eqr 2662 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
43eqcoms 2618 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
54eqeq2d 2620 . . 3 (𝐴 = 𝐵 → (𝑃 = {𝐴, 𝐵} ↔ 𝑃 = {𝐴}))
65biimpac 502 . 2 ((𝑃 = {𝐴, 𝐵} ∧ 𝐴 = 𝐵) → 𝑃 = {𝐴})
7 eqimss2 3621 . . 3 (𝑃 = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ 𝑃)
87adantr 480 . 2 ((𝑃 = {𝐴, 𝐵} ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ⊆ 𝑃)
96, 8ifpimpda 1022 1 (𝑃 = {𝐴, 𝐵} → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  if-wif 1006   = wceq 1475   ⊆ wss 3540  {csn 4125  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-sn 4126  df-pr 4128 This theorem is referenced by:  wlk1wlk  40846  eupth2lem3lem7  41402
 Copyright terms: Public domain W3C validator