Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpval Structured version   Visualization version   GIF version

Theorem iccpval 39953
Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpval (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
Distinct variable group:   𝑖,𝑝,𝑀

Proof of Theorem iccpval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-iccp 39952 . . 3 RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
21a1i 11 . 2 (𝑀 ∈ ℕ → RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))}))
3 oveq2 6557 . . . . 5 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
43oveq2d 6565 . . . 4 (𝑚 = 𝑀 → (ℝ*𝑚 (0...𝑚)) = (ℝ*𝑚 (0...𝑀)))
5 oveq2 6557 . . . . 5 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3121 . . . 4 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6rabeqbidv 3168 . . 3 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
87adantl 481 . 2 ((𝑀 ∈ ℕ ∧ 𝑚 = 𝑀) → {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
9 id 22 . 2 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
10 ovex 6577 . . . 4 (ℝ*𝑚 (0...𝑀)) ∈ V
1110rabex 4740 . . 3 {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ∈ V
1211a1i 11 . 2 (𝑀 ∈ ℕ → {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ∈ V)
132, 8, 9, 12fvmptd 6197 1 (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cn 10897  ...cfz 12197  ..^cfzo 12334  RePartciccp 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-iccp 39952
This theorem is referenced by:  iccpart  39954
  Copyright terms: Public domain W3C validator