Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfreq Structured version   Visualization version   GIF version

Theorem hbxfreq 2717
 Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1742 for equivalence version. (Contributed by NM, 21-Aug-2007.)
Hypotheses
Ref Expression
hbxfr.1 𝐴 = 𝐵
hbxfr.2 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
Assertion
Ref Expression
hbxfreq (𝑦𝐴 → ∀𝑥 𝑦𝐴)

Proof of Theorem hbxfreq
StepHypRef Expression
1 hbxfr.1 . . 3 𝐴 = 𝐵
21eleq2i 2680 . 2 (𝑦𝐴𝑦𝐵)
3 hbxfr.2 . 2 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
42, 3hbxfrbi 1742 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473   = wceq 1475   ∈ wcel 1977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-cleq 2603  df-clel 2606 This theorem is referenced by:  bnj1317  30146  bnj1441  30165  bnj1309  30344
 Copyright terms: Public domain W3C validator