Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1441 Structured version   Visualization version   GIF version

Theorem bnj1441 30165
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1441.1 (𝑥𝐴 → ∀𝑦 𝑥𝐴)
bnj1441.2 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
bnj1441 (𝑧 ∈ {𝑥𝐴𝜑} → ∀𝑦 𝑧 ∈ {𝑥𝐴𝜑})
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem bnj1441
StepHypRef Expression
1 df-rab 2905 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 bnj1441.1 . . . 4 (𝑥𝐴 → ∀𝑦 𝑥𝐴)
3 bnj1441.2 . . . 4 (𝜑 → ∀𝑦𝜑)
42, 3hban 2113 . . 3 ((𝑥𝐴𝜑) → ∀𝑦(𝑥𝐴𝜑))
54hbab 2601 . 2 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∀𝑦 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
61, 5hbxfreq 2717 1 (𝑧 ∈ {𝑥𝐴𝜑} → ∀𝑦 𝑧 ∈ {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473  wcel 1977  {cab 2596  {crab 2900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-rab 2905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator