Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1deoi Structured version   Visualization version   GIF version

Theorem h1deoi 27792
 Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
h1deot.1 𝐵 ∈ ℋ
Assertion
Ref Expression
h1deoi (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem h1deoi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 h1deot.1 . . 3 𝐵 ∈ ℋ
2 snssi 4280 . . 3 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
3 ocel 27524 . . 3 ({𝐵} ⊆ ℋ → (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0)))
41, 2, 3mp2b 10 . 2 (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0))
51elexi 3186 . . . 4 𝐵 ∈ V
6 oveq2 6557 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐵))
76eqeq1d 2612 . . . 4 (𝑥 = 𝐵 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0))
85, 7ralsn 4169 . . 3 (∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0)
98anbi2i 726 . 2 ((𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))
104, 9bitri 263 1 (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  {csn 4125  ‘cfv 5804  (class class class)co 6549  0cc0 9815   ℋchil 27160   ·ih csp 27163  ⊥cort 27171 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-hilex 27240 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oc 27493 This theorem is referenced by:  h1dei  27793
 Copyright terms: Public domain W3C validator