MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvex Structured version   Visualization version   GIF version

Theorem grpinvex 17255
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpinvex ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   0 (𝑦)

Proof of Theorem grpinvex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpcl.p . . . 4 + = (+g𝐺)
3 grpinvex.p . . . 4 0 = (0g𝐺)
41, 2, 3isgrp 17251 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 ))
54simprbi 479 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 )
6 oveq2 6557 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
76eqeq1d 2612 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
87rexbidv 3034 . . 3 (𝑥 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 0 ))
98rspccva 3281 . 2 ((∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
105, 9sylan 487 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  Grpcgrp 17245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-grp 17248
This theorem is referenced by:  dfgrp2  17270  grprcan  17278  grpinveu  17279  grprinv  17292
  Copyright terms: Public domain W3C validator