MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsneqopsn Structured version   Visualization version   GIF version

Theorem funsneqopsn 6322
Description: A singleton of an ordered pair is an ordered pair of equal singletons if the components are equal. (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsneqopsn (𝐴 = 𝐵𝐺 = ⟨{𝐴}, {𝐴}⟩)

Proof of Theorem funsneqopsn
StepHypRef Expression
1 opeq2 4341 . . . 4 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐴, 𝐵⟩)
21sneqd 4137 . . 3 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
3 funsndifnop.g . . 3 𝐺 = {⟨𝐴, 𝐵⟩}
42, 3syl6reqr 2663 . 2 (𝐴 = 𝐵𝐺 = {⟨𝐴, 𝐴⟩})
5 eqid 2610 . . . 4 𝐴 = 𝐴
6 eqid 2610 . . . 4 {𝐴} = {𝐴}
75, 6, 63pm3.2i 1232 . . 3 (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})
8 eqeq1 2614 . . . 4 (𝐺 = {⟨𝐴, 𝐴⟩} → (𝐺 = ⟨{𝐴}, {𝐴}⟩ ↔ {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩))
9 funsndifnop.a . . . . 5 𝐴 ∈ V
10 snex 4835 . . . . 5 {𝐴} ∈ V
119, 9, 10, 10snopeqop 4894 . . . 4 ({⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))
128, 11syl6bb 275 . . 3 (𝐺 = {⟨𝐴, 𝐴⟩} → (𝐺 = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})))
137, 12mpbiri 247 . 2 (𝐺 = {⟨𝐴, 𝐴⟩} → 𝐺 = ⟨{𝐴}, {𝐴}⟩)
144, 13syl 17 1 (𝐴 = 𝐵𝐺 = ⟨{𝐴}, {𝐴}⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cop 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132
This theorem is referenced by:  funsneqop  6323  vtxvalsnop  25716  iedgvalsnop  25717
  Copyright terms: Public domain W3C validator