Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frminex Structured version   Visualization version   GIF version

Theorem frminex 5018
 Description: If an element of a well-founded set satisfies a property 𝜑, then there is a minimal element that satisfies 𝜑. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
frminex.1 𝐴 ∈ V
frminex.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
frminex (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem frminex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rabn0 3912 . 2 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
2 frminex.1 . . . . 5 𝐴 ∈ V
32rabex 4740 . . . 4 {𝑥𝐴𝜑} ∈ V
4 ssrab2 3650 . . . 4 {𝑥𝐴𝜑} ⊆ 𝐴
5 fri 5000 . . . . . 6 ((({𝑥𝐴𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥𝐴𝜑} ⊆ 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅)) → ∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧)
6 frminex.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜓))
76ralrab 3335 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧 ↔ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧))
87rexbii 3023 . . . . . . 7 (∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧))
9 breq2 4587 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
109notbid 307 . . . . . . . . . 10 (𝑧 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑦𝑅𝑥))
1110imbi2d 329 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝜓 → ¬ 𝑦𝑅𝑧) ↔ (𝜓 → ¬ 𝑦𝑅𝑥)))
1211ralbidv 2969 . . . . . . . 8 (𝑧 = 𝑥 → (∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
1312rexrab2 3341 . . . . . . 7 (∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
148, 13bitri 263 . . . . . 6 (∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
155, 14sylib 207 . . . . 5 ((({𝑥𝐴𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥𝐴𝜑} ⊆ 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅)) → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
1615an4s 865 . . . 4 ((({𝑥𝐴𝜑} ∈ V ∧ {𝑥𝐴𝜑} ⊆ 𝐴) ∧ (𝑅 Fr 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅)) → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
173, 4, 16mpanl12 714 . . 3 ((𝑅 Fr 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅) → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
1817ex 449 . 2 (𝑅 Fr 𝐴 → ({𝑥𝐴𝜑} ≠ ∅ → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
191, 18syl5bir 232 1 (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583   Fr wfr 4994 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-fr 4997 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator