Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elzdif0 Structured version   Visualization version   GIF version

Theorem elzdif0 29352
Description: Lemma for qqhval2 29354. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Assertion
Ref Expression
elzdif0 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))

Proof of Theorem elzdif0
StepHypRef Expression
1 eldifi 3694 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → 𝑀 ∈ ℤ)
2 eldifn 3695 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 ∈ {0})
3 elsng 4139 . . . . 5 (𝑀 ∈ ℤ → (𝑀 ∈ {0} ↔ 𝑀 = 0))
43notbid 307 . . . 4 (𝑀 ∈ ℤ → (¬ 𝑀 ∈ {0} ↔ ¬ 𝑀 = 0))
54biimpa 500 . . 3 ((𝑀 ∈ ℤ ∧ ¬ 𝑀 ∈ {0}) → ¬ 𝑀 = 0)
61, 2, 5syl2anc 691 . 2 (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 = 0)
7 elz 11256 . . . . 5 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
81, 7sylib 207 . . . 4 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
98simprd 478 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))
10 3orass 1034 . . 3 ((𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ) ↔ (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
119, 10sylib 207 . 2 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
12 orel1 396 . 2 𝑀 = 0 → ((𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
136, 11, 12sylc 63 1 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  cdif 3537  {csn 4125  cr 9814  0cc0 9815  -cneg 10146  cn 10897  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-neg 10148  df-z 11255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator