Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrans | Structured version Visualization version GIF version |
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
eltrans.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltrans | ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trans 31133 | . . 3 ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | |
2 | 1 | eleq2i 2680 | . 2 ⊢ (𝐴 ∈ Trans ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
3 | eltrans.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | dftr6 30893 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
5 | 2, 4 | bitr4i 266 | 1 ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∈ wcel 1977 Vcvv 3173 ∖ cdif 3537 Tr wtr 4680 E cep 4947 ran crn 5039 ∘ ccom 5042 Trans ctrans 31109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-trans 31133 |
This theorem is referenced by: dfon3 31169 |
Copyright terms: Public domain | W3C validator |