Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpreqprb | Structured version Visualization version GIF version |
Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
Ref | Expression |
---|---|
elpreqprb | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreqpr 4334 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | |
2 | prid1g 4239 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝑥}) | |
3 | eleq2 2677 | . . . 4 ⊢ ({𝐵, 𝐶} = {𝐴, 𝑥} → (𝐴 ∈ {𝐵, 𝐶} ↔ 𝐴 ∈ {𝐴, 𝑥})) | |
4 | 2, 3 | syl5ibrcom 236 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
5 | 4 | exlimdv 1848 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
6 | 1, 5 | impbid2 215 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∃wex 1695 ∈ wcel 1977 {cpr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-un 3545 df-nul 3875 df-sn 4126 df-pr 4128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |