Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabd Structured version   Visualization version   GIF version

Theorem elabd 3321
 Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex (𝜑𝑋 ∈ V)
elab.xmaj (𝜑𝜒)
elab.xsub (𝑥 = 𝑋 → (𝜓𝜒))
Assertion
Ref Expression
elabd (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2 (𝜑𝑋 ∈ V)
2 elab.xmaj . 2 (𝜑𝜒)
3 elab.xsub . . 3 (𝑥 = 𝑋 → (𝜓𝜒))
43spcegv 3267 . 2 (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓))
51, 2, 4sylc 63 1 (𝜑 → ∃𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175 This theorem is referenced by:  hasheqf1od  13006  sizeusglecusg  26014  clrellem  36948  clcnvlem  36949  wwlksnextbij  41108
 Copyright terms: Public domain W3C validator