Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clrellem Structured version   Visualization version   GIF version

Theorem clrellem 36948
Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.)
Hypotheses
Ref Expression
clrellem.y (𝜑𝑌 ∈ V)
clrellem.rel (𝜑 → Rel 𝑋)
clrellem.sub (𝑥 = 𝑌 → (𝜓𝜒))
clrellem.sup (𝜑𝑋𝑌)
clrellem.maj (𝜑𝜒)
Assertion
Ref Expression
clrellem (𝜑 → Rel {𝑥 ∣ (𝑋𝑥𝜓)})
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem clrellem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clrellem.y . . . 4 (𝜑𝑌 ∈ V)
2 cnvexg 7005 . . . 4 (𝑌 ∈ V → 𝑌 ∈ V)
3 cnvexg 7005 . . . 4 (𝑌 ∈ V → 𝑌 ∈ V)
41, 2, 33syl 18 . . 3 (𝜑𝑌 ∈ V)
5 clrellem.rel . . . . . 6 (𝜑 → Rel 𝑋)
6 dfrel2 5502 . . . . . 6 (Rel 𝑋𝑋 = 𝑋)
75, 6sylib 207 . . . . 5 (𝜑𝑋 = 𝑋)
8 clrellem.sup . . . . . 6 (𝜑𝑋𝑌)
9 cnvss 5216 . . . . . 6 (𝑋𝑌𝑋𝑌)
10 cnvss 5216 . . . . . 6 (𝑋𝑌𝑋𝑌)
118, 9, 103syl 18 . . . . 5 (𝜑𝑋𝑌)
127, 11eqsstr3d 3603 . . . 4 (𝜑𝑋𝑌)
13 clrellem.maj . . . 4 (𝜑𝜒)
14 relcnv 5422 . . . . 5 Rel 𝑌
1514a1i 11 . . . 4 (𝜑 → Rel 𝑌)
1612, 13, 15jca31 555 . . 3 (𝜑 → ((𝑋𝑌𝜒) ∧ Rel 𝑌))
17 clrellem.sub . . . . 5 (𝑥 = 𝑌 → (𝜓𝜒))
1817cleq2lem 36933 . . . 4 (𝑥 = 𝑌 → ((𝑋𝑥𝜓) ↔ (𝑋𝑌𝜒)))
19 releq 5124 . . . 4 (𝑥 = 𝑌 → (Rel 𝑥 ↔ Rel 𝑌))
2018, 19anbi12d 743 . . 3 (𝑥 = 𝑌 → (((𝑋𝑥𝜓) ∧ Rel 𝑥) ↔ ((𝑋𝑌𝜒) ∧ Rel 𝑌)))
214, 16, 20elabd 3321 . 2 (𝜑 → ∃𝑥((𝑋𝑥𝜓) ∧ Rel 𝑥))
22 releq 5124 . . . 4 (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥))
2322rexab2 3340 . . 3 (∃𝑦 ∈ {𝑥 ∣ (𝑋𝑥𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋𝑥𝜓) ∧ Rel 𝑥))
2423biimpri 217 . 2 (∃𝑥((𝑋𝑥𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋𝑥𝜓)}Rel 𝑦)
25 relint 5165 . 2 (∃𝑦 ∈ {𝑥 ∣ (𝑋𝑥𝜓)}Rel 𝑦 → Rel {𝑥 ∣ (𝑋𝑥𝜓)})
2621, 24, 253syl 18 1 (𝜑 → Rel {𝑥 ∣ (𝑋𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wrex 2897  Vcvv 3173  wss 3540   cint 4410  ccnv 5037  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iin 4458  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator