Step | Hyp | Ref
| Expression |
1 | | edgaval 25794 |
. . . 4
⊢ (𝐺 ∈ UPGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
2 | 1 | eleq2d 2673 |
. . 3
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺))) |
3 | | eqid 2610 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
4 | | eqid 2610 |
. . . . . . 7
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
5 | 3, 4 | upgrf 25753 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
6 | | frn 5966 |
. . . . . 6
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤ 2} →
ran (iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∣ (#‘𝑥) ≤ 2}) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∣ (#‘𝑥) ≤ 2}) |
8 | 7 | sseld 3567 |
. . . 4
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤
2})) |
9 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → (#‘𝑥) = (#‘𝐸)) |
10 | 9 | breq1d 4593 |
. . . . . 6
⊢ (𝑥 = 𝐸 → ((#‘𝑥) ≤ 2 ↔ (#‘𝐸) ≤ 2)) |
11 | 10 | elrab 3331 |
. . . . 5
⊢ (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤ 2} ↔
(𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (#‘𝐸) ≤ 2)) |
12 | | eldifsn 4260 |
. . . . . . . . 9
⊢ (𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ↔ (𝐸 ∈
𝒫 (Vtx‘𝐺)
∧ 𝐸 ≠
∅)) |
13 | 12 | biimpi 205 |
. . . . . . . 8
⊢ (𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) → (𝐸 ∈
𝒫 (Vtx‘𝐺)
∧ 𝐸 ≠
∅)) |
14 | 13 | anim1i 590 |
. . . . . . 7
⊢ ((𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (#‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (#‘𝐸) ≤ 2)) |
15 | | df-3an 1033 |
. . . . . . 7
⊢ ((𝐸 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧
(#‘𝐸) ≤ 2) ↔
((𝐸 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧
(#‘𝐸) ≤
2)) |
16 | 14, 15 | sylibr 223 |
. . . . . 6
⊢ ((𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (#‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2)) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (#‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))) |
18 | 11, 17 | syl5bi 231 |
. . . 4
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤ 2} →
(𝐸 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧
(#‘𝐸) ≤
2))) |
19 | 8, 18 | syld 46 |
. . 3
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))) |
20 | 2, 19 | sylbid 229 |
. 2
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))) |
21 | 20 | imp 444 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2)) |