Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e2ebind | Structured version Visualization version GIF version |
Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind 37800 is derived from e2ebindVD 38170. (Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e2ebind | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2014 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
2 | 1 | 19.9 2060 | . . 3 ⊢ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) |
3 | biidd 251 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
4 | 3 | drex1 2315 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) |
5 | 4 | drex2 2316 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) |
6 | excom 2029 | . . . 4 ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | |
7 | 5, 6 | syl6bb 275 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) |
8 | 2, 7 | syl5rbbr 274 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
9 | 8 | aecoms 2300 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |