Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dropab1 | Structured version Visualization version GIF version |
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dropab1 | ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4340 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑧〉 = 〈𝑦, 𝑧〉) | |
2 | 1 | sps 2043 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → 〈𝑥, 𝑧〉 = 〈𝑦, 𝑧〉) |
3 | 2 | eqeq2d 2620 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 = 〈𝑥, 𝑧〉 ↔ 𝑤 = 〈𝑦, 𝑧〉)) |
4 | 3 | anbi1d 737 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑))) |
5 | 4 | drex2 2316 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑) ↔ ∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑))) |
6 | 5 | drex1 2315 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑))) |
7 | 6 | abbidv 2728 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑)}) |
8 | df-opab 4644 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑)} | |
9 | df-opab 4644 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑)} | |
10 | 7, 8, 9 | 3eqtr4g 2669 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1473 = wceq 1475 ∃wex 1695 {cab 2596 〈cop 4131 {copab 4642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |