Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab1 Structured version   Visualization version   GIF version

Theorem dropab1 37672
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})

Proof of Theorem dropab1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4340 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
21sps 2043 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
32eqeq2d 2620 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑦, 𝑧⟩))
43anbi1d 737 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
54drex2 2316 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
65drex1 2315 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
76abbidv 2728 . 2 (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)})
8 df-opab 4644 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)}
9 df-opab 4644 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)}
107, 8, 93eqtr4g 2669 1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  {cab 2596  cop 4131  {copab 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator