Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxwwlksn Structured version   Visualization version   GIF version

Theorem disjxwwlksn 41110
 Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.)
Hypotheses
Ref Expression
wwlksnexthasheq.v 𝑉 = (Vtx‘𝐺)
wwlksnexthasheq.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
disjxwwlksn Disj 𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)}
Distinct variable groups:   𝑦,𝑁   𝑥,𝑉   𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥)   𝑉(𝑦)

Proof of Theorem disjxwwlksn
StepHypRef Expression
1 simp1 1054 . . . . 5 (((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸) → (𝑥 substr ⟨0, 𝑁⟩) = 𝑦)
21a1i 11 . . . 4 (𝑥 ∈ Word 𝑉 → (((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸) → (𝑥 substr ⟨0, 𝑁⟩) = 𝑦))
32ss2rabi 3647 . . 3 {𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr ⟨0, 𝑁⟩) = 𝑦}
43rgenw 2908 . 2 𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr ⟨0, 𝑁⟩) = 𝑦}
5 disjxwrd 13307 . 2 Disj 𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 substr ⟨0, 𝑁⟩) = 𝑦}
6 disjss2 4556 . 2 (∀𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr ⟨0, 𝑁⟩) = 𝑦} → (Disj 𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 substr ⟨0, 𝑁⟩) = 𝑦} → Disj 𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)}))
74, 5, 6mp2 9 1 Disj 𝑦 ∈ (𝑁 WWalkSN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ⊆ wss 3540  {cpr 4127  ⟨cop 4131  Disj wdisj 4553  ‘cfv 5804  (class class class)co 6549  0cc0 9815  Word cword 13146   lastS clsw 13147   substr csubstr 13150  Vtxcvtx 25673  Edgcedga 25792   WWalkSN cwwlksn 41029 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-in 3547  df-ss 3554  df-disj 4554 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator