Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfarea Structured version   Visualization version   GIF version

Theorem dfarea 24487
 Description: Rewrite df-area 24483 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dfarea area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
Distinct variable group:   𝑥,𝑠

Proof of Theorem dfarea
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-area 24483 . 2 area = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
2 itgex 23343 . . . 4 ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V
32, 1dmmpti 5936 . . 3 dom area = {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)}
4 mpteq1 4665 . . 3 (dom area = {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} → (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥))
53, 4ax-mp 5 . 2 (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
61, 5eqtr4i 2635 1 area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  𝒫 cpw 4108  {csn 4125   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037  dom cdm 5038   “ cima 5041  ‘cfv 5804  ℝcr 9814  volcvol 23039  𝐿1cibl 23192  ∫citg 23193  areacarea 24482 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fn 5807  df-sum 14265  df-itg 23198  df-area 24483 This theorem is referenced by:  areaf  24488  areaval  24491
 Copyright terms: Public domain W3C validator