MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshfn Structured version   Visualization version   GIF version

Theorem cshfn 13387
Description: Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
cshfn ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
Distinct variable group:   𝑓,𝑙
Allowed substitution hints:   𝑁(𝑓,𝑙)   𝑊(𝑓,𝑙)

Proof of Theorem cshfn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2614 . . . 4 (𝑤 = 𝑊 → (𝑤 = ∅ ↔ 𝑊 = ∅))
21adantr 480 . . 3 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑤 = ∅ ↔ 𝑊 = ∅))
3 simpl 472 . . . . 5 ((𝑤 = 𝑊𝑛 = 𝑁) → 𝑤 = 𝑊)
4 simpr 476 . . . . . . 7 ((𝑤 = 𝑊𝑛 = 𝑁) → 𝑛 = 𝑁)
5 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
65adantr 480 . . . . . . 7 ((𝑤 = 𝑊𝑛 = 𝑁) → (#‘𝑤) = (#‘𝑊))
74, 6oveq12d 6567 . . . . . 6 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑛 mod (#‘𝑤)) = (𝑁 mod (#‘𝑊)))
87, 6opeq12d 4348 . . . . 5 ((𝑤 = 𝑊𝑛 = 𝑁) → ⟨(𝑛 mod (#‘𝑤)), (#‘𝑤)⟩ = ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)
93, 8oveq12d 6567 . . . 4 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑤 substr ⟨(𝑛 mod (#‘𝑤)), (#‘𝑤)⟩) = (𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩))
107opeq2d 4347 . . . . 5 ((𝑤 = 𝑊𝑛 = 𝑁) → ⟨0, (𝑛 mod (#‘𝑤))⟩ = ⟨0, (𝑁 mod (#‘𝑊))⟩)
113, 10oveq12d 6567 . . . 4 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑤 substr ⟨0, (𝑛 mod (#‘𝑤))⟩) = (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))
129, 11oveq12d 6567 . . 3 ((𝑤 = 𝑊𝑛 = 𝑁) → ((𝑤 substr ⟨(𝑛 mod (#‘𝑤)), (#‘𝑤)⟩) ++ (𝑤 substr ⟨0, (𝑛 mod (#‘𝑤))⟩)) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
132, 12ifbieq2d 4061 . 2 ((𝑤 = 𝑊𝑛 = 𝑁) → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (#‘𝑤)), (#‘𝑤)⟩) ++ (𝑤 substr ⟨0, (𝑛 mod (#‘𝑤))⟩))) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
14 df-csh 13386 . 2 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (#‘𝑤)), (#‘𝑤)⟩) ++ (𝑤 substr ⟨0, (𝑛 mod (#‘𝑤))⟩))))
15 0ex 4718 . . 3 ∅ ∈ V
16 ovex 6577 . . 3 ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) ∈ V
1715, 16ifex 4106 . 2 if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) ∈ V
1813, 14, 17ovmpt2a 6689 1 ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  c0 3874  ifcif 4036  cop 4131   Fn wfn 5799  cfv 5804  (class class class)co 6549  0cc0 9815  0cn0 11169  cz 11254  ..^cfzo 12334   mod cmo 12530  #chash 12979   ++ cconcat 13148   substr csubstr 13150   cyclShift ccsh 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-csh 13386
This theorem is referenced by:  cshword  13388  cshword2  40300
  Copyright terms: Public domain W3C validator