Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem2 Structured version   Visualization version   GIF version

Theorem clsk1indlem2 37360
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
Assertion
Ref Expression
clsk1indlem2 𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem2
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑠 = {∅} → 𝑠 = {∅})
2 snsspr1 4285 . . . . . . . . . 10 {∅} ⊆ {∅, 1𝑜}
31, 2syl6eqss 3618 . . . . . . . . 9 (𝑠 = {∅} → 𝑠 ⊆ {∅, 1𝑜})
43ancli 572 . . . . . . . 8 (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}))
54con3i 149 . . . . . . 7 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) → ¬ 𝑠 = {∅})
6 ssid 3587 . . . . . . 7 𝑠𝑠
75, 6jctir 559 . . . . . 6 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) → (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
87orri 390 . . . . 5 ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
98a1i 11 . . . 4 (𝑠 ∈ 𝒫 3𝑜 → ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
10 sseq2 3590 . . . . 5 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅, 1𝑜} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ 𝑠 ⊆ {∅, 1𝑜}))
11 sseq2 3590 . . . . 5 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ 𝑠𝑠))
1210, 11elimif 4072 . . . 4 (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
139, 12sylibr 223 . . 3 (𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
14 eqeq1 2614 . . . . 5 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
15 id 22 . . . . 5 (𝑟 = 𝑠𝑟 = 𝑠)
1614, 15ifbieq2d 4061 . . . 4 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
17 clsk1indlem.k . . . 4 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
18 prex 4836 . . . . 5 {∅, 1𝑜} ∈ V
19 vex 3176 . . . . 5 𝑠 ∈ V
2018, 19ifex 4106 . . . 4 if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ V
2116, 17, 20fvmpt 6191 . . 3 (𝑠 ∈ 𝒫 3𝑜 → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
2213, 21sseqtr4d 3605 . 2 (𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝐾𝑠))
2322rgen 2906 1 𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125  {cpr 4127  cmpt 4643  cfv 5804  1𝑜c1o 7440  3𝑜c3o 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  clsk1independent  37364
  Copyright terms: Public domain W3C validator