Proof of Theorem cdleme31fv
Step | Hyp | Ref
| Expression |
1 | | cdleme31.c |
. . . 4
⊢ 𝐶 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) |
2 | | riotaex 6515 |
. . . 4
⊢
(℩𝑧
∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) ∈ V |
3 | 1, 2 | eqeltri 2684 |
. . 3
⊢ 𝐶 ∈ V |
4 | | ifexg 4107 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝑋 ∈ 𝐵) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋) ∈ V) |
5 | 3, 4 | mpan 702 |
. 2
⊢ (𝑋 ∈ 𝐵 → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋) ∈ V) |
6 | | breq1 4586 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) |
7 | 6 | notbid 307 |
. . . . 5
⊢ (𝑥 = 𝑋 → (¬ 𝑥 ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊)) |
8 | 7 | anbi2d 736 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
9 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
10 | 9 | oveq2d 6565 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑠 ∨ (𝑥 ∧ 𝑊)) = (𝑠 ∨ (𝑋 ∧ 𝑊))) |
11 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
12 | 10, 11 | eqeq12d 2625 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥 ↔ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
13 | 12 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) ↔ (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
14 | 9 | oveq2d 6565 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑁 ∨ (𝑥 ∧ 𝑊)) = (𝑁 ∨ (𝑋 ∧ 𝑊))) |
15 | 14 | eqeq2d 2620 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)) ↔ 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) |
16 | 13, 15 | imbi12d 333 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊))) ↔ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
17 | 16 | ralbidv 2969 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊))) ↔ ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
18 | 17 | riotabidv 6513 |
. . . . 5
⊢ (𝑥 = 𝑋 → (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
19 | | cdleme31.o |
. . . . 5
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
20 | 18, 19, 1 | 3eqtr4g 2669 |
. . . 4
⊢ (𝑥 = 𝑋 → 𝑂 = 𝐶) |
21 | 8, 20, 11 | ifbieq12d 4063 |
. . 3
⊢ (𝑥 = 𝑋 → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋)) |
22 | | cdleme31.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
23 | 21, 22 | fvmptg 6189 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋) ∈ V) → (𝐹‘𝑋) = if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋)) |
24 | 5, 23 | mpdan 699 |
1
⊢ (𝑋 ∈ 𝐵 → (𝐹‘𝑋) = if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋)) |