Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv Structured version   Visualization version   GIF version

Theorem cdleme31fv 34696
 Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme31.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme31.c 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
Assertion
Ref Expression
cdleme31fv (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑠,𝑧,𝑋
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑠)   𝐵(𝑧,𝑠)   𝐶(𝑧,𝑠)   𝑃(𝑧,𝑠)   𝑄(𝑧,𝑠)   𝐹(𝑥,𝑧,𝑠)   (𝑥,𝑧,𝑠)   (𝑧,𝑠)   (𝑥,𝑧,𝑠)   𝑁(𝑥,𝑧,𝑠)   𝑂(𝑥,𝑧,𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem cdleme31fv
StepHypRef Expression
1 cdleme31.c . . . 4 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
2 riotaex 6515 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))) ∈ V
31, 2eqeltri 2684 . . 3 𝐶 ∈ V
4 ifexg 4107 . . 3 ((𝐶 ∈ V ∧ 𝑋𝐵) → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
53, 4mpan 702 . 2 (𝑋𝐵 → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
6 breq1 4586 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
76notbid 307 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
87anbi2d 736 . . . 4 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
9 oveq1 6556 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑊) = (𝑋 𝑊))
109oveq2d 6565 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑠 (𝑥 𝑊)) = (𝑠 (𝑋 𝑊)))
11 id 22 . . . . . . . . . 10 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2625 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑠 (𝑥 𝑊)) = 𝑥 ↔ (𝑠 (𝑋 𝑊)) = 𝑋))
1312anbi2d 736 . . . . . . . 8 (𝑥 = 𝑋 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋)))
149oveq2d 6565 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑁 (𝑥 𝑊)) = (𝑁 (𝑋 𝑊)))
1514eqeq2d 2620 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 = (𝑁 (𝑥 𝑊)) ↔ 𝑧 = (𝑁 (𝑋 𝑊))))
1613, 15imbi12d 333 . . . . . . 7 (𝑥 = 𝑋 → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1716ralbidv 2969 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1817riotabidv 6513 . . . . 5 (𝑥 = 𝑋 → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
19 cdleme31.o . . . . 5 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
2018, 19, 13eqtr4g 2669 . . . 4 (𝑥 = 𝑋𝑂 = 𝐶)
218, 20, 11ifbieq12d 4063 . . 3 (𝑥 = 𝑋 → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
22 cdleme31.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2321, 22fvmptg 6189 . 2 ((𝑋𝐵 ∧ if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V) → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
245, 23mpdan 699 1 (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  ℩crio 6510  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-riota 6511  df-ov 6552 This theorem is referenced by:  cdleme31fv1  34697
 Copyright terms: Public domain W3C validator