Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcl Structured version   Visualization version   GIF version

Theorem caovcl 6726
 Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovcl.1 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caovcl ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovcl
StepHypRef Expression
1 tru 1479 . 2
2 caovcl.1 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
32adantl 481 . . 3 ((⊤ ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
43caovclg 6724 . 2 ((⊤ ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝑆)
51, 4mpan 702 1 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ⊤wtru 1476   ∈ wcel 1977  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  ecopovtrn  7737  eceqoveq  7740  genpss  9705  genpnnp  9706  genpass  9710  expcllem  12733  txlly  21249  txnlly  21250
 Copyright terms: Public domain W3C validator