Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > btwnlng2 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
btwnlng2.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) |
Ref | Expression |
---|---|
btwnlng2 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnlng2.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) | |
2 | 1 | 3mix2d 1230 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
3 | btwnlng1.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | btwnlng1.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | btwnlng1.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | btwnlng1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | btwnlng1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
9 | btwnlng1.d | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
10 | btwnlng1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgellng 25248 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
12 | 2, 11 | mpbird 246 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1030 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 TarskiGcstrkg 25129 Itvcitv 25135 LineGclng 25136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-trkg 25152 |
This theorem is referenced by: mirln 25371 colperpexlem3 25424 outpasch 25447 hpgerlem 25457 |
Copyright terms: Public domain | W3C validator |