Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > broutsideof | Structured version Visualization version GIF version |
Description: Binary relationship form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
broutsideof | ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-outsideof 31397 | . . 3 ⊢ OutsideOf = ( Colinear ∖ Btwn ) | |
2 | 1 | breqi 4589 | . 2 ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ 𝑃( Colinear ∖ Btwn )〈𝐴, 𝐵〉) |
3 | brdif 4635 | . 2 ⊢ (𝑃( Colinear ∖ Btwn )〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) | |
4 | 2, 3 | bitri 263 | 1 ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∧ wa 383 ∖ cdif 3537 〈cop 4131 class class class wbr 4583 Btwn cbtwn 25569 Colinear ccolin 31314 OutsideOfcoutsideof 31396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-br 4584 df-outsideof 31397 |
This theorem is referenced by: broutsideof2 31399 outsideofrflx 31404 outsidele 31409 outsideofcol 31410 |
Copyright terms: Public domain | W3C validator |