Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brne0 Structured version   Visualization version   GIF version

Theorem brne0 4632
 Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0 (𝐴𝑅𝐵𝑅 ≠ ∅)

Proof of Theorem brne0
StepHypRef Expression
1 df-br 4584 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 ne0i 3880 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝑅 ≠ ∅)
31, 2sylbi 206 1 (𝐴𝑅𝐵𝑅 ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874  ⟨cop 4131   class class class wbr 4583 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-dif 3543  df-nul 3875  df-br 4584 This theorem is referenced by:  bropfvvvvlem  7143  brfvimex  37344  brovmptimex  37345  clsneibex  37420  neicvgbex  37430
 Copyright terms: Public domain W3C validator