Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj982 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj982.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
bnj982.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
bnj982.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
bnj982.4 | ⊢ (𝜃 → ∀𝑥𝜃) |
Ref | Expression |
---|---|
bnj982 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj17 30006 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | bnj982.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | bnj982.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | bnj982.3 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
5 | 2, 3, 4 | hb3an 2114 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
6 | bnj982.4 | . . 3 ⊢ (𝜃 → ∀𝑥𝜃) | |
7 | 5, 6 | hban 2113 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → ∀𝑥((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
8 | 1, 7 | hbxfrbi 1742 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 ∀wal 1473 ∧ w-bnj17 30005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-bnj17 30006 |
This theorem is referenced by: bnj1096 30107 bnj1311 30346 bnj1445 30366 |
Copyright terms: Public domain | W3C validator |