Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj982 Structured version   Unicode version

Theorem bnj982 32934
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj982.1  |-  ( ph  ->  A. x ph )
bnj982.2  |-  ( ps 
->  A. x ps )
bnj982.3  |-  ( ch 
->  A. x ch )
bnj982.4  |-  ( th 
->  A. x th )
Assertion
Ref Expression
bnj982  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  A. x
( ph  /\  ps  /\  ch  /\  th ) )

Proof of Theorem bnj982
StepHypRef Expression
1 df-bnj17 32837 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps  /\  ch )  /\  th ) )
2 bnj982.1 . . . 4  |-  ( ph  ->  A. x ph )
3 bnj982.2 . . . 4  |-  ( ps 
->  A. x ps )
4 bnj982.3 . . . 4  |-  ( ch 
->  A. x ch )
52, 3, 4hb3an 1879 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  A. x ( ph  /\ 
ps  /\  ch )
)
6 bnj982.4 . . 3  |-  ( th 
->  A. x th )
75, 6hban 1878 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  A. x ( (
ph  /\  ps  /\  ch )  /\  th ) )
81, 7hbxfrbi 1623 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  A. x
( ph  /\  ps  /\  ch  /\  th ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1377    /\ w-bnj17 32836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-12 1803
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-ex 1597  df-nf 1600  df-bnj17 32837
This theorem is referenced by:  bnj1096  32938  bnj1311  33177  bnj1445  33197
  Copyright terms: Public domain W3C validator