![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj982 | Structured version Visualization version Unicode version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj982.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bnj982.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bnj982.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bnj982.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bnj982 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj17 29492 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bnj982.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | bnj982.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | bnj982.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | hb3an 2015 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | bnj982.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | hban 2014 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | hbxfrbi 1694 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1669 ax-4 1682 ax-5 1758 ax-6 1805 ax-7 1851 ax-12 1933 |
This theorem depends on definitions: df-bi 189 df-an 373 df-3an 987 df-ex 1664 df-nf 1668 df-bnj17 29492 |
This theorem is referenced by: bnj1096 29594 bnj1311 29833 bnj1445 29853 |
Copyright terms: Public domain | W3C validator |