Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1052 Structured version   Visualization version   GIF version

Theorem bnj1052 30297
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1052.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1052.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1052.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1052.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1052.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1052.6 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
bnj1052.7 𝐷 = (ω ∖ {∅})
bnj1052.8 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1052.9 (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))
bnj1052.10 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
bnj1052.37 ((𝜃𝜏𝜒𝜁) → ( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)))
Assertion
Ref Expression
bnj1052 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝑧,𝐴,𝑓,𝑖,𝑛   𝐵,𝑓,𝑖,𝑛,𝑧   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑧,𝑅   𝑓,𝑋,𝑖,𝑛,𝑦   𝑧,𝑋   𝜂,𝑗   𝜏,𝑓,𝑖,𝑛,𝑧   𝜃,𝑓,𝑖,𝑛,𝑧   𝑖,𝑗,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝜃(𝑦,𝑗)   𝜏(𝑦,𝑗)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜁(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝜌(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑗)   𝐵(𝑦,𝑗)   𝐷(𝑦,𝑧,𝑓,𝑗,𝑛)   𝑅(𝑗)   𝐾(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝑋(𝑗)

Proof of Theorem bnj1052
StepHypRef Expression
1 bnj1052.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1052.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1052.3 . 2 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj1052.4 . 2 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
5 bnj1052.5 . 2 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
6 bnj1052.6 . 2 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
7 bnj1052.7 . 2 𝐷 = (ω ∖ {∅})
8 bnj1052.8 . 2 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
9 19.23vv 1890 . . . . 5 (∀𝑛𝑖((𝜃𝜏𝜒𝜁) → 𝑧𝐵) ↔ (∃𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵))
109albii 1737 . . . 4 (∀𝑓𝑛𝑖((𝜃𝜏𝜒𝜁) → 𝑧𝐵) ↔ ∀𝑓(∃𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵))
11 19.23v 1889 . . . 4 (∀𝑓(∃𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵) ↔ (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵))
1210, 11bitri 263 . . 3 (∀𝑓𝑛𝑖((𝜃𝜏𝜒𝜁) → 𝑧𝐵) ↔ (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵))
13 bnj1052.37 . . . . 5 ((𝜃𝜏𝜒𝜁) → ( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)))
14 vex 3176 . . . . . . . . 9 𝑛 ∈ V
15 bnj1052.10 . . . . . . . . 9 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
1614, 15bnj110 30182 . . . . . . . 8 (( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)) → ∀𝑖𝑛 𝜂)
17 bnj1052.9 . . . . . . . . 9 (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))
186, 17bnj1049 30296 . . . . . . . 8 (∀𝑖𝑛 𝜂 ↔ ∀𝑖𝜂)
1916, 18sylib 207 . . . . . . 7 (( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)) → ∀𝑖𝜂)
201919.21bi 2047 . . . . . 6 (( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)) → 𝜂)
2120, 17sylib 207 . . . . 5 (( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)) → ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))
2213, 21mpcom 37 . . . 4 ((𝜃𝜏𝜒𝜁) → 𝑧𝐵)
2322gen2 1714 . . 3 𝑛𝑖((𝜃𝜏𝜒𝜁) → 𝑧𝐵)
2412, 23mpgbi 1716 . 2 (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)
251, 2, 3, 4, 5, 6, 7, 8, 24bnj1034 30292 1 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  [wsbc 3402  cdif 3537  wss 3540  c0 3874  {csn 4125   ciun 4455   class class class wbr 4583   E cep 4947   Fr wfr 4994  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011   trClc-bnj18 30013   TrFow-bnj19 30015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iun 4457  df-br 4584  df-fr 4997  df-fn 5807  df-bnj17 30006  df-bnj18 30014
This theorem is referenced by:  bnj1053  30298
  Copyright terms: Public domain W3C validator