Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1052 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1052.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1052.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1052.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1052.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
bnj1052.5 | ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
bnj1052.6 | ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) |
bnj1052.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1052.8 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj1052.9 | ⊢ (𝜂 ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
bnj1052.10 | ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) |
bnj1052.37 | ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂))) |
Ref | Expression |
---|---|
bnj1052 | ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1052.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1052.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1052.3 | . 2 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1052.4 | . 2 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
5 | bnj1052.5 | . 2 ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) | |
6 | bnj1052.6 | . 2 ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | |
7 | bnj1052.7 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1052.8 | . 2 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | 19.23vv 1890 | . . . . 5 ⊢ (∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
10 | 9 | albii 1737 | . . . 4 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ ∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
11 | 19.23v 1889 | . . . 4 ⊢ (∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
12 | 10, 11 | bitri 263 | . . 3 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
13 | bnj1052.37 | . . . . 5 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂))) | |
14 | vex 3176 | . . . . . . . . 9 ⊢ 𝑛 ∈ V | |
15 | bnj1052.10 | . . . . . . . . 9 ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | |
16 | 14, 15 | bnj110 30182 | . . . . . . . 8 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → ∀𝑖 ∈ 𝑛 𝜂) |
17 | bnj1052.9 | . . . . . . . . 9 ⊢ (𝜂 ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
18 | 6, 17 | bnj1049 30296 | . . . . . . . 8 ⊢ (∀𝑖 ∈ 𝑛 𝜂 ↔ ∀𝑖𝜂) |
19 | 16, 18 | sylib 207 | . . . . . . 7 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → ∀𝑖𝜂) |
20 | 19 | 19.21bi 2047 | . . . . . 6 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → 𝜂) |
21 | 20, 17 | sylib 207 | . . . . 5 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
22 | 13, 21 | mpcom 37 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
23 | 22 | gen2 1714 | . . 3 ⊢ ∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
24 | 12, 23 | mpgbi 1716 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 24 | bnj1034 30292 | 1 ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 ∀wal 1473 = wceq 1475 ∃wex 1695 ∈ wcel 1977 {cab 2596 ∀wral 2896 ∃wrex 2897 Vcvv 3173 [wsbc 3402 ∖ cdif 3537 ⊆ wss 3540 ∅c0 3874 {csn 4125 ∪ ciun 4455 class class class wbr 4583 E cep 4947 Fr wfr 4994 suc csuc 5642 Fn wfn 5799 ‘cfv 5804 ωcom 6957 ∧ w-bnj17 30005 predc-bnj14 30007 FrSe w-bnj15 30011 trClc-bnj18 30013 TrFow-bnj19 30015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-iun 4457 df-br 4584 df-fr 4997 df-fn 5807 df-bnj17 30006 df-bnj18 30014 |
This theorem is referenced by: bnj1053 30298 |
Copyright terms: Public domain | W3C validator |