Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 32161
 Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 32156 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 32151 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 4760 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 4718 . . . . 5 ∅ ∈ V
54snss 4259 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 219 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 3750 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 3598 1 tag 𝐴 ⊆ 𝒫 𝐴
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977   ∪ cun 3538   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  sngl bj-csngl 32146  tag bj-ctag 32155 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-bj-sngl 32147  df-bj-tag 32156 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator