Step | Hyp | Ref
| Expression |
1 | | axccd.1 |
. . 3
⊢ (𝜑 → 𝐴 ≈ ω) |
2 | | encv 7849 |
. . . . . 6
⊢ (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈
V)) |
3 | 2 | simpld 474 |
. . . . 5
⊢ (𝐴 ≈ ω → 𝐴 ∈ V) |
4 | 1, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
5 | | breq1 4586 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω)) |
6 | | raleq 3115 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
7 | 6 | exbidv 1837 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
8 | 5, 7 | imbi12d 333 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
9 | | ax-cc 9140 |
. . . . 5
⊢ (𝑦 ≈ ω →
∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
10 | 8, 9 | vtoclg 3239 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ≈ ω →
∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
11 | 4, 10 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ≈ ω → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
12 | 1, 11 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
13 | | nfv 1830 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
14 | | nfra1 2925 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) |
15 | 13, 14 | nfan 1816 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
16 | | axccd.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
17 | 16 | adantlr 747 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
18 | | rspa 2914 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 18 | adantll 746 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
20 | 17, 19 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝑥) |
21 | 20 | ex 449 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑥)) |
22 | 15, 21 | ralrimi 2940 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
23 | 22 | ex 449 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
24 | 23 | eximdv 1833 |
. 2
⊢ (𝜑 → (∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
25 | 12, 24 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |