Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopmap | Structured version Visualization version GIF version |
Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopmap | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assintopval 41631 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | |
2 | clintopval 41630 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑𝑚 (𝑀 × 𝑀))) | |
3 | rabeq 3166 | . . 3 ⊢ (( clIntOp ‘𝑀) = (𝑀 ↑𝑚 (𝑀 × 𝑀)) → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} = {𝑜 ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} = {𝑜 ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
5 | 1, 4 | eqtrd 2644 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 {crab 2900 class class class wbr 4583 × cxp 5036 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 assLaw casslaw 41610 clIntOp cclintop 41623 assIntOp cassintop 41624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-intop 41625 df-clintop 41626 df-assintop 41627 |
This theorem is referenced by: assintop 41635 isassintop 41636 |
Copyright terms: Public domain | W3C validator |