Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovvoveq Structured version   Visualization version   GIF version

Theorem aovvoveq 39921
 Description: The alternative value of the operation on an ordered pair equals the operation's value on this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovvoveq ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))

Proof of Theorem aovvoveq
StepHypRef Expression
1 df-aov 39847 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
21eleq1i 2679 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶)
3 afvvfveq 39877 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 → (𝐹'''⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
4 df-ov 6552 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
53, 1, 43eqtr4g 2669 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))
62, 5sylbi 206 1 ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ⟨cop 4131  ‘cfv 5804  (class class class)co 6549  '''cafv 39843   ((caov 39844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-rab 2905  df-v 3175  df-un 3545  df-if 4037  df-fv 5812  df-ov 6552  df-afv 39846  df-aov 39847 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator