Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aov0ov0 Structured version   Visualization version   GIF version

Theorem aov0ov0 39922
 Description: If the alternative value of the operation on an ordered pair is the empty set, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aov0ov0 ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅)

Proof of Theorem aov0ov0
StepHypRef Expression
1 afv0fv0 39878 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
2 df-aov 39847 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eqeq1i 2615 . 2 ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''⟨𝐴, 𝐵⟩) = ∅)
4 df-ov 6552 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eqeq1i 2615 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
61, 3, 53imtr4i 280 1 ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  ∅c0 3874  ⟨cop 4131  ‘cfv 5804  (class class class)co 6549  '''cafv 39843   ((caov 39844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-if 4037  df-fv 5812  df-ov 6552  df-afv 39846  df-aov 39847 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator