MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abss Structured version   Visualization version   GIF version

Theorem abss 3634
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abss
StepHypRef Expression
1 abid2 2732 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq2i 3593 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ {𝑥𝜑} ⊆ 𝐴)
3 ss2ab 3633 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ ∀𝑥(𝜑𝑥𝐴))
42, 3bitr3i 265 1 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473  wcel 1977  {cab 2596  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554
This theorem is referenced by:  abssdv  3639  rabss  3642  uniiunlem  3653  iunss  4497  moabex  4854  reliun  5162  axdc2lem  9153  mptelee  25575  fpwrelmap  28896  ss2iundf  36970  iunssf  38290  hoidmvlelem1  39485
  Copyright terms: Public domain W3C validator